PySpark | How to Perform Data Type Casting on Columns in a DataFrame?

When working with data in PySpark, ensuring the correct data type for each column is essential for accurate analysis and processing. Sometimes, the data types of columns may not match your requirements. For example, a column containing numeric data might be stored as a string (string), or dates may be stored in an incorrect format.

PySpark | How to Remove Non-ASCII Characters from a DataFrame?

When working with text data in Spark, you might come across special characters that don’t belong to the standard English alphabet. These characters are called non-ASCII characters. For example, accented letters like é in “José” or symbols like emojis 😊. Sometimes, you may need to clean your data by removing these characters. This article will show you how to identify and remove non-ASCII characters from a Spark DataFrame.

📢 Need further clarification or have any questions? Let's connect!

Connect 1:1 With Me: Schedule Call


If you have any doubts or would like to discuss anything related to this blog, feel free to reach out to me. I'm here to help! You can schedule a call by clicking on the above given link.
I'm looking forward to hearing from you and assisting you with any inquiries you may have. Your understanding and engagement are important to me!

This will close in 20 seconds